Search results for "harmonic functions."

showing 9 items of 9 documents

Boundary Behavior of Harmonic Functions on Gromov Hyperbolic Manifolds

2013

Hyperbolic groupGeneral MathematicsHyperbolic functionMathematical analysista111Systolic geometryHyperbolic manifoldBoundary (topology)Relatively hyperbolic groupCalderón–Stein theoremHarmonic functionGromov hyperbolic manifoldsharmonic functionsHyperbolic equilibrium pointMathematicsInternational Mathematics Research Notices
researchProduct

Uniform measure density condition and game regularity for tug-of-war games

2018

We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for the associated stopping times and density estimates for the sum of independent and identically distributed random vectors. peerReviewed

Statistics and ProbabilityIndependent and identically distributed random variablesComputer Science::Computer Science and Game Theorygame regularitydensity estimate for the sum of i.i.d. random vectorsTug of war01 natural sciencesMeasure (mathematics)$p$-regularityMathematics - Analysis of PDEsFOS: MathematicsApplied mathematicspeliteoriastochastic games0101 mathematics91A15 60G50 35J92Mathematicsp-harmonic functionsstokastiset prosessit$p$-harmonic functionsosittaisdifferentiaaliyhtälöthitting probability010102 general mathematicsStochastic gametug-of-war gamesProbability (math.PR)uniform measure density condition010101 applied mathematicsNoiseuniform distribution in a ballMathematics - ProbabilityAnalysis of PDEs (math.AP)
researchProduct

Improved Bounds for Hermite–Hadamard Inequalities in Higher Dimensions

2019

Let $\Omega \subset \mathbb{R}^n$ be a convex domain and let $f:\Omega \rightarrow \mathbb{R}$ be a positive, subharmonic function (i.e. $\Delta f \geq 0$). Then $$ \frac{1}{|\Omega|} \int_{\Omega}{f dx} \leq \frac{c_n}{ |\partial \Omega| } \int_{\partial \Omega}{ f d\sigma},$$ where $c_n \leq 2n^{3/2}$. This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies $c_n \geq n-1$. As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other $ \Omega_2 \subset \Omega_1 \subset \mathbb{R}^n$: $$ \frac{|\partial \Omega_1|}{|\Omega_1|} \frac{| \Omega_2|}{|\partial \Ome…

Pure mathematicsInequalitymedia_common.quotation_subject01 natural sciencesConvexitysymbols.namesakeMathematics - Metric GeometrySettore MAT/05 - Analisi MatematicaHadamard transformHermite–Hadamard inequality0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Hermite-Hadamard inequality subharmonic functions convexity.0101 mathematicsComputingMilieux_MISCELLANEOUSsubharmonic functionsmedia_commonMathematicsSubharmonic functionHermite polynomialsconvexity010102 general mathematicsMetric Geometry (math.MG)Functional Analysis (math.FA)Mathematics - Functional AnalysisMSC : 26B25 28A75 31A05 31B05 35B50Mathematics::LogicHermite-Hadamard inequalityDifferential geometryMathematics - Classical Analysis and ODEsFourier analysissymbols010307 mathematical physicsGeometry and TopologyThe Journal of Geometric Analysis
researchProduct

Approximation of plurisubharmonic functions

2015

We extend a result by Fornaaess and Wiegerinck [Ark. Mat. 1989;27:257-272] on plurisubharmonic Mergelyan type approximation to domains with boundaries locally given by graphs of continuous functions.

Numerical AnalysisPure mathematicsApplied Mathematics010102 general mathematicsMathematical analysista111Type (model theory)01 natural sciences010101 applied mathematicsComputational Mathematicsboundary regularityMergelyan type approximationcontinuous boundaryplurisubharmonic functions0101 mathematicsapproximationAnalysisMathematicsComplex Variables and Elliptic Equations
researchProduct

Uniform rectifiability and ε-approximability of harmonic functions in Lp

2020

Suppose that E⊂Rn+1 is a uniformly rectifiable set of codimension 1. We show that every harmonic function is ε-approximable in Lp(Ω) for every p∈(1,∞), where Ω:=Rn+1∖E. Together with results of many authors this shows that pointwise, L∞ and Lp type ε-approximability properties of harmonic functions are all equivalent and they characterize uniform rectifiability for codimension 1 Ahlfors–David regular sets. Our results and techniques are generalizations of recent works of T. Hytönen and A. Rosén and the first author, J. M. Martell and S. Mayboroda. peerReviewed

ε-approximabilitypotentiaaliteoriaharmonic functions.mittateoriaCarleson measuresharmoninen analyysiuniform rectifiability
researchProduct

Quadrature domains for the Helmholtz equation with applications to non-scattering phenomena

2022

In this paper, we introduce quadrature domains for the Helmholtz equation. We show existence results for such domains and implement the so-called partial balayage procedure. We also give an application to inverse scattering problems, and show that there are non-scattering domains for the Helmholtz equation at any positive frequency that have inward cusps.

metaharmonic functionsmatematiikkapartial balayageyhtälötmean value theoremMathematics::Numerical Analysis35J05 35J15 35J20 35R30 35R35quadrature domainnon-scattering phenomenaMathematics - Analysis of PDEsFOS: MathematicsHelmholtz equationacoustic equationAnalysisAnalysis of PDEs (math.AP)
researchProduct

Conformality and $Q$-harmonicity in sub-Riemannian manifolds

2016

We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsWork (thermodynamics)morphism propertyGeneral Mathematicsconformal transformationBoundary (topology)Conformal map01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric GeometryLiouville TheoremRegularity for p-harmonic functionSubelliptic PDE0103 physical sciencesFOS: MathematicsMathematics (all)0101 mathematicspopp measureMathematicsosittaisdifferentiaaliyhtälötsubelliptic PDESmoothnessQuasi-conformal mapApplied MathematicsHarmonic coordinates; Liouville Theorem; Quasi-conformal maps; Regularity for p-harmonic functions; Sub-Riemannian geometry; Subelliptic PDE; Mathematics (all); Applied Mathematicsta111Harmonic coordinate010102 general mathematics53C17 35H20 58C25Metric Geometry (math.MG)16. Peace & justiceregularity for p-harmonic functionsSub-Riemannian geometrysub-Riemannian geometryDifferential Geometry (math.DG)quasi-conformal mapsRegularity for p-harmonic functionsharmonic coordinates010307 mathematical physicsMathematics::Differential GeometrymonistotLiouville theoremAnalysis of PDEs (math.AP)
researchProduct

Gradient estimates for heat kernels and harmonic functions

2020

Let $(X,d,\mu)$ be a doubling metric measure space endowed with a Dirichlet form $\E$ deriving from a "carr\'e du champ". Assume that $(X,d,\mu,\E)$ supports a scale-invariant $L^2$-Poincar\'e inequality. In this article, we study the following properties of harmonic functions, heat kernels and Riesz transforms for $p\in (2,\infty]$: (i) $(G_p)$: $L^p$-estimate for the gradient of the associated heat semigroup; (ii) $(RH_p)$: $L^p$-reverse H\"older inequality for the gradients of harmonic functions; (iii) $(R_p)$: $L^p$-boundedness of the Riesz transform ($p<\infty$); (iv) $(GBE)$: a generalised Bakry-\'Emery condition. We show that, for $p\in (2,\infty)$, (i), (ii) (iii) are equivalent, wh…

Mathematics - Differential GeometryPure mathematicsPoincaré inequality01 natural sciencesMeasure (mathematics)Sobolev inequalitydifferentiaaligeometriaRiesz transformsymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryLi-Yau estimates0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsRiesz transformosittaisdifferentiaaliyhtälötSemigroupDirichlet form010102 general mathematicsMetric Geometry (math.MG)harmoninen analyysiheat kernelsDifferential Geometry (math.DG)Harmonic functionMathematics - Classical Analysis and ODEssymbolspotentiaaliteoria010307 mathematical physicsIsoperimetric inequalityharmonic functionsAnalysisAnalysis of PDEs (math.AP)Journal of Functional Analysis
researchProduct

Superconductive and insulating inclusions for linear and non-linear conductivity equations

2015

We detect an inclusion with infinite conductivity from boundary measurements represented by the Dirichlet-to-Neumann map for the conductivity equation. We use both the enclosure method and the probe method. We use the enclosure method to prove partial results when the underlying equation is the quasilinear $p$-Laplace equation. Further, we rigorously treat the forward problem for the partial differential equation $\operatorname{div}(\sigma\lvert\nabla u\rvert^{p-2}\nabla u)=0$ where the measurable conductivity $\sigma\colon\Omega\to[0,\infty]$ is zero or infinity in large sets and $1<p<\infty$.

Pure mathematicsControl and Optimizationmedia_common.quotation_subjectMathematics::Analysis of PDEsBoundary (topology)probe methodConductivity01 natural sciencesMathematics - Analysis of PDEs35R30 35J92 (Primary) 35H99 (Secondary)FOS: MathematicsDiscrete Mathematics and CombinatoricsPharmacology (medical)Nabla symbol0101 mathematicsmedia_commonp-harmonic functionsLaplace's equationPhysicsPartial differential equationCalderón problemComputer Science::Information Retrieval010102 general mathematicsta111Zero (complex analysis)Infinity3. Good health010101 applied mathematicsNonlinear systeminclusionModeling and Simulationinverse boundary value problemAnalysisinkluusioAnalysis of PDEs (math.AP)enclosure method
researchProduct